martes, 10 de febrero de 2009
SUPERCONDUCTIVIDAD
La resistividad eléctrica de un conductor metálico disminuye gradualmente a medida que la temperatura se reduce. Sin embargo, en los conductores ordinarios, como el cobre y la plata, las impurezas y otros defectos producen un valor límite. Incluso cerca de cero absoluto una muestra de cobre muestra una resistencia no nula. La resistencia de un superconductor, en cambio, desciende bruscamente a cero cuando el material se enfría por debajo de su temperatura crítica. Una corriente eléctrica que fluye en una espiral de cable superconductor puede persistir indefinidamente sin fuente de alimentación. Al igual que el ferromagnetismo y las líneas espectrales atómicas, la superconductividad es un fenómeno de la mecánica cuántica.
La superconductividad ocurre en una gran variedad de materiales, incluyendo elementos simples como el estaño y el aluminio, diversas aleaciones metálicas y algunos semiconductores fuertemente dopados. La superconductividad no ocurre en metales nobles como el oro y la plata, ni en la mayoría de los metales ferromagnéticos.
DIELECTRICO O AISLANTES
El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 x 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Estos materiales conductores tienen un gran número de electrones libres (electrones no estrechamente ligados a los núcleos) que pueden transportar la corriente; los buenos aislantes apenas poseen estos electrones. Algunos materiales, como el silicio o el germanio, que tienen un número limitado de electrones libres, se comportan como semiconductores, y son la materia básica de los transistores.
Dieléctrico, sustancia que es mala conductora de la electricidad y que amortiguará la fuerza de un campo eléctrico que la atraviese. Las sustancias conductoras carecen de esta propiedad de amortiguación. Dos cuerpos de cargas opuestas situados a cada lado de un trozo de vidrio (un dieléctrico) se atraerán entre sí, pero si entre ambos cuerpos se coloca una lámina de cobre, la carga será conducida por el metal.
En la mayoría de los casos, las propiedades de un dieléctrico son producto de la polarización de la sustancia. Al colocar un dieléctrico en un campo eléctrico, los electrones y protones que constituyen sus átomos se reorientarán a sí mismos, y en algunos casos las moléculas se polarizarán de igual modo. Como resultado de esta polarización, el dieléctrico queda sometido a una tensión, almacenando energía que quedará disponible al retirar el campo eléctrico. La polarización de un dieléctrico es similar a la que se produce al magnetizar un trozo de hierro. Como en el caso de un imán, parte de la polarización se mantiene al retirar la fuerza polarizadora. Un dieléctrico compuesto de un disco de parafina endurecido al someterlo a una tensión eléctrica mantendrá su polarización durante años. Estos dieléctricos se denominan electretos.
CONDUCTIVIDAD ELECTRICOS
Conductores y conducción
Si dos cuerpos cargados a diferente potencial, V1 < V2, se unen mediante un cable métálico, los electrones fluyen desde la región a potencial V1 hacia el otro cuerpo (es decir, en dirección contraria al campo) hasta que los dos potenciales se igualan.
El fenómeno descrito se denomina conducción eléctrica y el movimiento de cargas a través del cable o conductor constituye una corriente eléctrica.
Esta corriente será transitoria, a menos que se disponga de un procedimiento para mantener permanentemente la diferencia de potencial, con lo que el flujo de cargas no cesa-ría. Los dispositivos que cumplen esta función (pilas, baterias, dinamos, etc.) se denominan genéricamente fuentes de fuerza electromotriz o, abreviadamente, fem. Se caracterizan por la diferencia de potencial V2 - V1 que son capaces de mantener entre sus extremos. La fem y el conductor al que se conecta definen un camino cerrado o circuito eléctrico, que permite man-tener un flujo estacionario, sin acumulación de carga en ningún punto.
En el caso de la conducción en metales la fem actúa bombeando electrones de retorno al punto de potencial más bajo, pero la con-ducción puede tener lugar en otros medios y con otro u otros portadores de carga, tanto po-sitivos como negativos.
Descripción
Se llaman conductores eléctricos a los materiales que puestos en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas (p.e. el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal empleado universalmente es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.[1]
domingo, 8 de febrero de 2009
SEMICONDUCTORES ELECTRICOS
http://www.youtube.com/watch?v=4WK8l8vlAxY
Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden creciente
Los semiconductores más conocidos son el siliceo (Si) y el germanio (Ge). Debido a que, como veremos más adelante, el comportamiento del siliceo es más estable que el germanio frente a todas las perturbaciones exteriores que puden variar su respuesta normal, será el primero (Si) el elemento semiconductor más utilizado en la fabricación de los componentes electrónicos de estado solido. A él nos referiremos normalmente, teniendo en cuenta que el proceso del germanio es absolutamente similar.
Como todos los demás, el átomo de silicio tiene tantas cargas positivas en el núcleo, como electrones en las órbitas que le rodean. (En el caso del silicio este número es de 14). El interés del semiconductor se centra en su capacidad de dar lugar a la aparición de una corriente, es decir, que haya un movimiento de electrones. Como es de todos conocido, un electrón se siente más ligado al núcleo cuanto mayor sea su cercanía entre ambos. Por tanto los electrones que tienen menor fuerza de atracción por parte del núcleo y pueden ser liberados de la misma, son los electrones que se encuentran en las órbitas exteriores. Estos electrónes pueden, según lo dicho anteriormente, quedar libres al inyectarles una pequeña energía. En estos recaerá nuestra atención y es así que en vez de utilizar el modelo completo del átomo de silicio (figura 1), utilizaremos la representación simplificada (figura 2) donde se resalta la zona de nuestro interés.
Un cristal de silicio forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía necesaria, saltar a la banda de conducción, dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y el germanio respectivamente.
Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno, se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n"la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que:
ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura. Si se somete el cristal a una diferencia de tensión, se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción
DOPADO DE LOS SEMICONDUCTORES
En un semiconductor intrínseco las concentraciones de huecos y de electrones pueden alterarse mediante la adición de pequeñas cantidades de elementos llamados impurezas o dopantes, a la composición cristalina. Como veremos a lo largo de este curso, es esta característica de los semiconductores la que permite la existencia de circuitos electrónicos integrados.
La cuestión es: ¿Qué sucede si además de elevar la temperatura por encima de 0 K consideramos la presencia de impurezas en el silicio?. Supongamos que sustituimos un átomo de silicio (que pertenece al grupo IV) por otro de fósforo (grupo V), pentavalente. Como sólo hay la posibilidad de establecer cuatro enlaces covalentes con los átomos de silicio adyacentes, un electrón quedará libre. Teniendo en cuenta esto, es fácil deducir que es lo que ocurrirá si se sustituye un átomo de silicio por otro de un elemento perteneciente al grupo III, el boro por ejemplo: evidentemente se introducirá un hueco, ya que el boro solo aporta tres electrones de valencia. Las dos situaciones se clarifican en la Figura 2.
SEMICONDUCTOR TIPO N
Si en una red cristalina de silicio (átomos de silicio enlazados entre sí) ....
Enlace covalente de átomos de germanio, obsérvese que cada átomo comparte cada uno de sus electrones con otros cuatro átomos
.... sustituimos uno de sus átomos (que como sabemos tiene 4 electrones en su capa exterior) por un átomo de otro elemento que contenga cinco electrones en su capa exterior, resulta que cuatro de esos electrones sirven para enlazarse con el resto de los átomos de la red y el quinto queda libre.
Semiconductor dopado tipo N
A esta red de silicio "dopado" con esta clase de impurezas se le denomina "Silicio tipo N"
En esta situación hay mayor número de electrones que de huecos. Por ello a estos últimos se les denomina "portadores minoritarios" y "portadores mayoritarios" a los electrones
Las Impurezas tipo N más utilizadas en el proceso de dopado son el arsénico, el antimonio y el fósforo
Está claro que si a un semiconductor dopado se le aplica tensión en sus bornas, las posibilidades de que aparezca una corriente en el circuito son mayores a las del caso de la aplicación de la misma tensión sobre un semiconductor intrínseco o puro.